
MIDI File Format

Standard MIDI files provide a common file format used by most musical software and hardware
devices to store song information including the title, track names, and most importantly what
instruments to use and the sequence of musical events, such as notes and instrument control
information needed to play back the song. This standardization allows one software package to
create and save files that can later be loaded and edited by another completely different
program, even on a different type of computer. Almost every software music sequencer is
capable of loading and saving standard MIDI files.

File Format Specification

Data Formats
All data values are stored in Big‐Endian ﴾most significant byte first﴿ format. Also, many values
are stored in a variable‐length format which may use one or more bytes per value. Variable‐
length values use the lower 7 bits of a byte for data and the top bit to signal a following data
byte. If the top bit is set to 1, then another value byte follows. Below is a table of examples to
help demonstrate how variable length values are used.

Value Variable‐Length

Hex Bin Hex Bin

00 00000000 00 00000000

C8 11001000 8148 10000001 01001000

100000 00010000 00000000 00000000 C08000 11000000 10000000 00000000

Example values and their variable‐length equivalents.
A variable‐length value may use a maximum of 4 bytes. This means the maximum value that can be
represented is 0x0FFFFFFF ﴾represented as 0xFF, 0xFF, 0xFF, 0x7F﴿.

File Structure
MIDI files are organized into data chunks. Each chunk is prefixed with an 8 byte header: 4 byte ID
string used to identify the type of chunk followed by a 4 byte size which defines the chunk's length
as number of bytes following this chunk's header.

Header Chunk

https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#file-format-specification
https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#data-formats
https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#file-structure
https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#header-chunk

The header chunk contains information about the entire song including MIDI format type, number
of tracks and timing division. There is only one header chunk per standard MIDI file and it always
comes first. Before describing each element of the header chunk, here is a chart to help give an
overview of the chunk's organization.

Offset Length Type Description Value

0x00 4 char[4] chunk ID "MThd" ﴾0x4D546864﴿

0x04 4 dword chunk size 6 ﴾0x00000006﴿

0x08 2 word format type 0 ‐ 2

0x10 2 word number of tracks 1 ‐ 65,535

0x12 2 word time division see following text

MIDI Header Chunk Format
Chunk ID and Size
The chunk ID is always "MThd" ﴾0x4D546864﴿ and the size is always 6 because the header chunk
always contains the same 3 word values.

Format Type
The first word describes the MIDI format type. It can be a value of 0, 1 or 2 and describes what how
the following track information is to be interpreted. A type 0 MIDI file has one track that contains
all of the MIDI events for the entire song, including the song title, time signature, tempo and music
events. A type 1 MIDI file should have two or more tracks. The first, by convention, contains song
information such as the title, time signature, tempo, etc. ﴾more detail in Track Chunk section﴿. The
second and following tracks contain a title, musical event data, etc. specific to that track. This
closely matches the organization of modern multi‐track MIDI sequencers. A type 2 MIDI file is sort
of a combination of the other two types. It contains multiple tracks, but each track represents a
different sequence which may not necessarily be played simultaneously. This is meant to be used to
save drum patterns, or other multi‐pattern music sequences.

Number of Tracks
The second word simply defines the number of track chunks that follow this header chunk. A type 0
MIDI file may only contain a value of 1, because they can only contain one track. Type 1 and 2 MIDI
files may contain up to 65,536 ﴾0xFFFF﴿ tracks.

Time Division
The third and final word in the MIDI header chunk is a bit more complicated than the first two. It
contains the time division used to decode the track event delta times into "real" time. This value is
represents either ticks per beat or frames per second. If the top bit of the word ﴾bit mask 0x8000﴿ is
0, the following 15 bits describe the time division in ticks per beat. Otherwise the following 15 bits
﴾bit mask 0x7FFF﴿ describe the time division in frames per second. Ticks per beat translate to the
number of clock ticks or track delta positions ﴾described in the Track Chunk section﴿ in every
quarter note of music. Common values range from 48 to 960, although newer sequencers go far
beyond this range to ease working with MIDI and digital audio together. Frames per second is
defined by breaking the remaining 15 bytes into two values. The top 7 bits ﴾bit mask 0x7F00﴿ define
a value for the number of SMPTE frames and can be 24, 25, 29 ﴾for 29.97 fps﴿ or 30. The remaining
byte ﴾bit mask 0x00FF﴿ defines how many clock ticks or track delta positions there are per frame. So
a time division example of 0x9978 could be broken down into it's three parts: the top bit is one, so

it is in SMPTE frames per second format, the following 7 bits have a value of 25 ﴾0x19﴿ and the
bottom byte has a value of 120 ﴾0x78﴿. This means the example plays at 24 frames per second
SMPTE time and has 120 ticks per frame.

Track Chunk
Track chunks contain all of the information for an individual track including, track name and music
events. Here is an overview of a track chunk's organization.

Offset Length Type Description Value

0x00 4 char[4] chunk ID "MTrk" ﴾0x4D54726B﴿

0x04 4 dword chunk size see following text

0x08 track event data ﴾see following text﴿

MIDI Track Chunk Format
Chunk ID and Size
The chunk ID is always "MTrk" ﴾0x4D54726B﴿ and the size varies depending on the number of bytes
used for all of the events contained in the track.

Track Event Data
The track event data contains a stream of MIDI events that define information about the sequence
and how it is played. The next section describes the different types of events.

MIDI Events

sequence and track titles to individual music events. Each event includes a delta time, event type
and usually some event type specific data.
Delta‐Times
The event delta time is defined by a variable‐length value. It determines when an event should be
played relative to the track's last event. A delta time of 0 means that it should play simultaneously
with the last event. A track's first event delta time defines the amount of time to wait before
playing this first event. Events unaffected by time are still preceded by a delta time, but should
always use a value of 0 and come first in the stream of track events. Examples of this type of event
include track titles and copyright information. The most important thing to remember about delta
times is that they are relative values, not absolute times. The actual time they represent is
determined by a couple factors. The time division ﴾defined in the MIDI header chunk﴿ and the
tempo ﴾defined with a track event﴿. If no tempo is define, 120 beats per minute is assumed.

Types of Events
There are three types of events: MIDI Control Events, System Exclusive Events and Meta Events.

MIDI Channel Events
Musical control information such as playing a note or adjusting a MIDI channel's modulation value
are defined by MIDI Channel Events. Each MIDI Channel Event consists of a variable‐length delta

Track events are used to describe all of the musical content of a MIDI file, from tempo changes to

https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#track-chunk
https://github.com/colxi/midi-parser-js/wiki/MIDI-File-Format-Specifications#midi-events

time ﴾like all track events﴿ and a two or three byte description which determines the MIDI channel it
corresponds to, the type of event it is and one or two event type specific values. Below is a table
illustrating how MIDI Channel Events are formatted.

Delta Time Event Type Value MIDI Channel Parameter 1 Parameter 2

variable‐length 4 bits 4 bits 1 byte 1 byte

MIDI Channel Event Format
MIDI Channel Events are the most common type of track event and usually make up the bulk of a
MIDI file. The following table gives an overview of the seven MIDI Channel Events, listing their
numeric value and parameters.

Event Type Value Parameter 1 Parameter 2

Note Off 0x8 note number velocity

Note On 0x9 note number velocity

Note Aftertouch 0xA note number aftertouch value

Controller 0xB controller number controller value

Program Change 0xC program number not used

Channel Aftertouch 0xD aftertouch value not used

Pitch Bend 0xE pitch value ﴾LSB﴿ pitch value ﴾MSB﴿

MIDI Channel Events
Although all of the MIDI Channel Events follow the same basic format, each one requires a bit of
explanation. Below is a detailed description of each and how it is used.

 Note Off Event
The Note Off Event is used to signal when a MIDI key is released. These events have two
parameters identical to a Note On event. The note number specifies which of the 128 MIDI
keys is being played and the velocity determines how fast/hard the key was released. The
note number is normally used to specify which previously pressed key is being released
and the velocity is usually ignored, but is sometimes used to adjust the slope of an
instrument's release phase.

Note Off MIDI Channel Note Number Velocity

8 ﴾0x8﴿ 0‐15 0‐127 0‐127

Note Off Event Value Ranges
Note On Event
The Note On Event is used to signal when a MIDI key is pressed. This type of event has two
parameters. The note number that specifies which of the 128 MIDI keys is being played
and the velocity determines how fast/hard the key is pressed. The note number is normally
used to specify the instruments musical pitch and the velocity is usually used to specify the
instruments playback volume and intensity.

Note On MIDI Channel Note Number Velocity

9 ﴾0x9﴿ 0‐15 0‐127 0‐127

Note On Event Value Ranges
Note Aftertouch Event
The Note Aftertouch Event is used to indicate a pressure change on one of the currently
pressed MIDI keys. It has two parameters. The note number of which key's pressure is
changing and the aftertouch value which specifies amount of pressure being applied ﴾0 =
no pressure, 127 = full pressure﴿. Note Aftertouch is used for extra expression of particular
notes, often introducing or increasing some type of modulation during the instrument's
sustain phase

Note Aftertouch MIDI Channel Note Number Amount

10 ﴾0xA﴿ 0‐15 0‐127 0‐127

Note Aftertouch Event Value Ranges
Controller Event
The Controller Event signals the change in a MIDI channels state. There are 128 controllers
which define different attributes of the channel including volume, pan, modulation, effects,
and more. This event type has two parameters. The controller number specifies which
control is changing and the controller value defines it's new setting.

Controller MIDI Channel Controller Type Value

11 ﴾0xB﴿ 0‐15 0‐127 0‐127

Controller Event Value Ranges
Below is a list of the defined MIDI controller types.

Value Controller Type

0 ﴾0x00﴿ Bank Select

1 ﴾0x01﴿ Modulation

2 ﴾0x02﴿ Breath Controller

4 ﴾0x04﴿ Foot Controller

5 ﴾0x05﴿ Portamento Time

6 ﴾0x06﴿ Data Entry ﴾MSB﴿

7 ﴾0x07﴿ Main Volume

8 ﴾0x08﴿ Balance

10 ﴾0x0A﴿ Pan

11 ﴾0x0B﴿ Expression Controller

12 ﴾0x0C﴿ Effect Control 1

13 ﴾0x0D﴿ Effect Control 2

16‐19 ﴾0x10‐0x13﴿ General‐Purpose Controllers 1‐4

32‐63 ﴾0x20‐0x3F﴿ LSB for controllers 0‐31

64 ﴾0x40﴿ Damper pedal ﴾sustain﴿

65 ﴾0x41﴿ Portamento

66 ﴾0x42﴿ Sostenuto

67 ﴾0x43﴿ Soft Pedal

68 ﴾0x44﴿ Legato Footswitch

69 ﴾0x45﴿ Hold 2

70 ﴾0x46﴿ Sound Controller 1 ﴾default: Timber Variation﴿

71 ﴾0x47﴿ Sound Controller 2 ﴾default: Timber/Harmonic Content﴿

72 ﴾0x48﴿ Sound Controller 3 ﴾default: Release Time﴿

73 ﴾0x49﴿ Sound Controller 4 ﴾default: Attack Time﴿

74‐79 ﴾0x4A‐0x4F﴿

80‐83 ﴾0x50‐0x53﴿ General‐Purpose Controllers 5‐8

84 ﴾0x54﴿ Portamento Control

91 ﴾0x5B﴿ Effects 1 Depth ﴾formerly External Effects Depth﴿

92 ﴾0x5C﴿ Effects 2 Depth ﴾formerly Tremolo Depth﴿

93 ﴾0x5D﴿ Effects 3 Depth ﴾formerly Chorus Depth﴿

94 ﴾0x5E﴿ Effects 4 Depth ﴾formerly Celeste Detune﴿

95 ﴾0x5F﴿ Effects 5 Depth ﴾formerly Phaser Depth﴿

96 ﴾0x60﴿ Data Increment

97 ﴾0x61﴿ Data Decrement

98 ﴾0x62﴿ Non‐Registered Parameter Number ﴾LSB﴿

99 ﴾0x63﴿ Non‐Registered Parameter Number ﴾MSB﴿

100 ﴾0x64﴿ Registered Parameter Number ﴾LSB﴿

101 ﴾0x65﴿ Registered Parameter Number ﴾MSB﴿

121‐127 ﴾0x79‐0x7F﴿ Mode Messages

Defined MIDI Controllers
Program Change Event
The Program Change Event is used to change which program ﴾instrument/patch﴿ should

Sound Controller 5‐10

be played on the MIDI channel. This type of event takes only one parameter, the program
number of the new instrument/patch.

Program Change MIDI Channel Program Number

12 ﴾0xC﴿ 0‐15 0‐127

Program Change Event Value Ranges
Channel Aftertouch Event
The Channel Aftertouch Event is similar to the Note Aftertouch message, except it effects
all keys currently pressed on the specific MIDI channel. This type of event takes only one
parameter, the aftertouch amount ﴾0 = no pressure, 127 = full pressure﴿.

Channel Aftertouch MIDI Channel Amount

13 ﴾0xD﴿ 0‐15 0‐127

Channel Aftertouch Event Value Ranges
Pitch Bend Event
The Pitch Bend Event is similar to a controller event, except that it is a unique MIDI
Channel Event that has two bytes to describe it's value. The pitch value is defined by both
parameters of the MIDI Channel Event by joining them in the format of yyyyyyyxxxxxxx
where the y characters represent the last 7 bits of the second parameter and the x
characters represent the last 7 bits of the first parameter. The combining of both
parameters enables high accuracy values ﴾0 ‐ 16383﴿. The pitch value affects all playing
notes on the current channel. Values below 8192 decrease the pitch, while values above
8192 increase the pitch. The pitch range may vary from instrument to instrument, but is
usually +/‐2 semi‐tones.

Pitch Bend MIDI Channel Value ﴾LSB﴿ Value ﴾MSB﴿

14 ﴾0xE﴿ 0‐15 0‐127 0‐127

Pitch Bend Event Value Ranges

Meta Events
Events that are not to be sent or received over a MIDI port are called Meta Events. These events are
defined by an event type value of 0xFF and have a variable size of parameter data which is defined
after the event type.

Meta Event Type Length Data

255 ﴾0xFF﴿ 0‐255 variable‐length type specific

Meta Event Values
There are currently fifteen defined Meta Events. Each one is described in detail below.

 Sequence Number
This meta event defines the pattern number of a Type 2 MIDI file or the number of a

sequence in a Type 0 or Type 1 MIDI file. This meta event should always have a delta time
of 0 and come before all MIDI Channel Events and non‐zero delta time events.

Meta Event Type Length Number ﴾MSB﴿ Number ﴾LSB﴿

255 ﴾0xFF﴿ 0 ﴾0x00﴿ 2 0‐255 0‐255

Sequence Number Meta Event Values
Text Event
This meta event defines some text which can be used for any reason including track notes,
comments, etc. The text string is usually ASCII text, but may be any character ﴾0x00‐0xFF﴿.

Meta Event Type Length Text

255 ﴾0xFF﴿ 1 ﴾0x01﴿ string length ASCII text

Text Meta Event Values
Copyright Notice
This meta event defines copyright information including the copyright symbol © ﴾0xA9﴿,
the year and the author. This meta event should always be in the first track chunk, have a
delta time of 0 and come before all MIDI Channel Events and non‐zero delta time events.

Meta Event Type Length Text

255 ﴾0xFF﴿ 2 ﴾0x02﴿ string length ASCII text

Copyright Notice Meta Event Values
Sequence/Track Name
This meta event defines the name of a sequence when in a Type 0 or Type 2 MIDI file or in
the first track of a Type 1 MIDI file. It defines a track name when it appears in any track
after the first in a Type 1 MIDI file. This meta event should always have a delta time of 0
and come before all MIDI Channel Events and non‐zero delta time events.

Meta Event Type Length Text

255 ﴾0xFF﴿ 3 ﴾0x03﴿ string length ASCII text

Sequence/Track Name Meta Event Values
Instrument Name
This meta event defines the name of an instrument being used in the current track chunk.
This event can be used with the MIDI Channel Prefix meta event to define which
instrument is being used on a specific channel.

Meta Event Type Length Text

255 ﴾0xFF﴿ 4 ﴾0x04﴿ string length ASCII text

Instrument Name Meta Event Values
Lyrics
This meta event defines the lyrics in a song and are usually used to define a syllable or

group of works per quarter note. This event can be used as an equivalent of sheet music
lyrics or for implementing a karaoke‐style system.

Meta Event Type Length Text

255 ﴾0xFF﴿ 5 ﴾0x05﴿ string length ASCII text

Lyrics Meta Event Values
Marker
This meta event marks a significant point in time for the sequence. It is usually found in
the first track chunk, but may appear in any one. This event can be useful for marking the
beginning/end of a new verse or chorus.

Meta Event Type Length Text

255 ﴾0xFF﴿ 6 ﴾0x06﴿ string length ASCII text

Marker Meta Event Values
Cue Point
This meta event marks the start of some type of new sound or action. It is usually found in
the first track chunk, but may appear in any one. This event is sometimes used by
sequencers to mark when playback of a sample or video should begin.

Meta Event Type Length Text

255 ﴾0xFF﴿ 7 ﴾0x07﴿ string length ASCII text

Cue Point Meta Event Values
MIDI Channel Prefix
This meta event associates a MIDI channel with following meta events. It's effect is
terminated by another MIDI Channel Prefix event or any non‐ Meta event. It is often used
before an Instrument Name Event to specify which channel an instrument name
represents.

Meta Event Type Length Channel

255 ﴾0xFF﴿ 32 ﴾0x20﴿ 1 0‐15

MIDI Channel Prefix Meta Event Values
End Of Track
This meta event is used to signal the end of a track chunk and must always appear as the
last event in every track chunk.

Meta Event Type Length

255 ﴾0xFF﴿ 47 ﴾0x2F﴿ 0

End Of Track Meta Event Values
Set Tempo
This meta event sets the sequence tempo in terms of microseconds per quarter‐note

which is encoded in three bytes. It usually is found in the first track chunk, time‐aligned to
occur at the same time as a MIDI clock message to promote more accurate
synchronization. If no set tempo event is present, 120 beats per minute is assumed. The
following formula's can be used to translate the tempo from microseconds per quarter‐
note to beats per minute and back.

MICROSECONDS_PER_MINUTE = 60000000BPM = MICROSECONDS_PER_MINUTE / MPQNMPQN =
MICROSECONDS_PER_MINUTE / BPM

Meta Event Type Length Microseconds/Quarter‐Note

255 ﴾0xFF﴿ 81 ﴾0x51﴿ 3 0‐8355711

Set Tempo Meta Event Values
SMPTE Offset
This meta event is used to specify the SMPTE starting point offset from the beginning of
the track. It is defined in terms of hours, minutes, seconds, frames and sub‐frames ﴾always
100 sub‐frames per frame, no matter what sub‐division is specified in the MIDI header
chunk﴿. The byte used to specify the hour offset also specifies the frame rate in the
following format: 0rrhhhhhh where rr is two bits for the frame rate where 00=24 fps,
01=25 fps, 10=30 fps ﴾drop frame﴿, 11=30 fps and hhhhhh is six bits for the hour ﴾0‐23﴿.
The hour byte's top bit is always 0. The frame byte's possible range depends on the
encoded frame rate in the hour byte. A 25 fps frame rate means that a maximum value of
24 may be set for the frame byte.

Meta Event Type Length Hour Min Sec Fr SubFr

255 ﴾0xFF﴿ 84 ﴾0x54﴿ 5 0‐23 * 0‐59 0‐59 0‐30 * 0‐99

SMPTE Offset Meta Event Values, * read preceding text for details
Time Signature
This meta event is used to set a sequences time signature. The time signature defined with
4 bytes, a numerator, a denominator, a metronome pulse and number of 32nd notes per
MIDI quarter‐note. The numerator is specified as a literal value, but the denominator is
specified as ﴾get ready﴿ the value to which the power of 2 must be raised to equal the
number of subdivisions per whole note. For example, a value of 0 means a whole note
because 2 to the power of 0 is 1 ﴾whole note﴿, a value of 1 means a half‐note because 2 to
the power of 1 is 2 ﴾half‐note﴿, and so on. The metronome pulse specifies how often the
metronome should click in terms of the number of clock signals per click, which come at a
rate of 24 per quarter‐note. For example, a value of 24 would mean to click once every
quarter‐note ﴾beat﴿ and a value of 48 would mean to click once every half‐note ﴾2 beats﴿.
And finally, the fourth byte specifies the number of 32nd notes per 24 MIDI clock signals.
This value is usually 8 because there are usually 8 32nd notes in a quarter‐note. At least
one Time Signature Event should appear in the first track chunk ﴾or all track chunks in a
Type 2 file﴿ before any non‐zero delta time events. If one is not specified 4/4, 24, 8 should
be assumed.

Meta Event Type Length Numer Denom Metro 32nds

255 ﴾0xFF﴿ 88 ﴾0x58﴿ 4 0‐255 0‐255 0‐255 1‐255

Time Signature Meta Event Values
Key Signature
This meta event is used to specify the key ﴾number of sharps or flats﴿ and scale ﴾major or
minor﴿ of a sequence. A positive value for the key specifies the number of sharps and a
negative value specifies the number of flats. A value of 0 for the scale specifies a major key
and a value of 1 specifies a minor key.

Meta Event Type Length Key Scale

255 ﴾0xFF﴿ 89 ﴾0x59﴿ 2 ‐7‐7 0‐1

Key Signature Meta Event Values
Sequencer Specific
This meta event is used to specify information specific to a hardware or software
sequencer. The first Data byte ﴾or three bytes if the first byte is 0﴿ specifies the
manufacturer's ID and the following bytes contain information specified by the
manufacturer. The individual manufacturers may document this information in their
respective manuals.

Meta Event Type Length Data

255 ﴾0xFF﴿ 127 ﴾0x7F﴿ variable‐length any type and amount *

Sequencer Specific Meta Event Values, * read preceding text for details

System Exclusive Events
Also known as SysEx Events, these MIDI events are used to control MIDI hardware or software that
require special data bytes that will follow their manufacturer's specifications. Every SysEx event
includes an ID that specifies which manufacturer's product is to be the intended receiver. All other
products will ignore the event. There are three types of SysEx messages which are used to send
data in a single event, across multiple events or authorize the transmission of specific MIDI
messages.

 Normal SysEx Events
These are the most common type of SysEx event and are used to hold a single block of
manufacturer specific data. The first byte is always 0xF0 and the second is a variable‐
length value that specifies the length of the following SysEx data in bytes. The SysEx data
bytes must always end with a 0xF7 byte to signal the end of the message.

SysEx Event Length Data

240 ﴾0xF0﴿ variable‐length data bytes, 0xF7

Normal SysEx Event Values
Divided SysEx Events
A large amount of SysEx data in a Normal SysEx Event could cause following MIDI Channel
Events to be transmitted after the time they should be played. This will cause an unwanted
delay in play back of the following events. The second type of SysEx Events solve this
problem by allowing a large amount of SysEx data to be divided into smaller blocks,
transmitted with a delay between each division to allow the transmission of other MIDI

events in order to prevent congesting of the limited MIDI bandwidth. The initial Divided
SysEx Event follows the same format as a Normal SysEx Event with the exception that the
last data byte is not 0xF7. This indicates the the SysEx data is not finished and will be
continued in an upcoming Divided SysEx Event. Any following Divided SysEx Events before
the final one use the a similar format as the first, only the start byte is 0xF0 instead of 0xF7
to signal continuation of SysEx data. The final block follows the same format as the
continuation blocks, except the last data byte is 0xF7 to signal the completion of the
divided SysEx data.

SysEx Event Length Data

240 ﴾0xF0﴿ variable‐length data bytes

247 ﴾0xF7﴿ variable‐length data bytes

247 ﴾0xF7﴿ variable‐length data bytes, 0xF7

Divided SysEx Event Values
Authorization SysEx Events
The last type of SysEx Event authorizes and enables the transmission of special messages
such as Song Position Pointer, MIDI Time Code and Song Select messages. These SysEx
Events use the event type value 0xF7.

SysEx Event Length Data

247 ﴾0xF7﴿ variable‐length data bytes

Authorization SysEx Event Values

